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Abstract

This paper deals with models of driving system adling vessels developed by applying methods ofessipn
analysis and artificial neural networks. In panlarly, a general form, identification process, andmparison of
these models are presented.
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1. Introduction

In 1902, the largest, fastest sailing ship the dvtwdd ever seen was launched. The legendary

Preussen dominated the seas, only to be goneew atort years. Neither before nor since has the
world seen such a magnificent sailing ship. Urdiday... Inspired by the legendary Tall Ship,
Preussen, the new Royal Clipper has the proudndigin of being the largest and only five-
masted sailing ship built since her predecessorawaxhed at the ending of the last century. With
her complement of 42 sails, Royal Clipper is a i@ sight to behold. You might think she was
an apparition from the grand age of sail, but Raylpper is as new as tomorrow. She boasts
state-of-the-art navigation systems and all thefoashof today.
We can observe the tendency of increasing suclpa ¢y grandiose vessels year after year. In
order to assure the passengers’ safety, the sai@sgels have to be equipped with engines
enabling sailing in any wind conditions. As a ruseich vessels are equipped with adjustable
propellers. In order to assure the operating effeness, the sailing vessels have to have the
reasonable operating costs. But most importantofacinfluencing these costs are expenses
connected with engine fuel consumption. We caredtadt this consumption depends mainly on
the following factors:

— the sailing conditions,

— the adjustable propeller speed and pitch.

The first group of factors is out of our controlheveas the adjustable propeller speed and pitch
can be controlled by the ship operator. In orderdotrol the engine fuel consumption, we should
build an appropriate optimization model enablingesgon of optimal settings of the adjustable
propeller speed and pitch for various sailing cbads. This, in turn, requires to develop models
combining the operating effectiveness of sailingseds with the mentioned parameters.

In the subject bibliography, for example in [1]],[£3], [4] and [5], we can find many models of
driving system developed for the trade vesselssd@hmaodels combine the vessel effectiveness
with the engine rotation speed and propeller piial.combine all factors influencing the vessel
effectiveness, methods of regression analysis ppéied in these models. As a rule, relations



applied in these models have the form of nonlimealttiple regressions determined for only for
three sailing conditions: light, variable and heavy
In the case of sailing vessels, such an approaghsatisfactory due to their sensitivity to changes
of sailing conditions. It results from the follovgriactors:

— as arule, sailing vessel engines are auxiliaryrgga low margin of power,

— tall masts and rigs cause for increasing of aiistasce which, in turn, depends on strength

and direction of wind,

— hull shapes are sensitive to sea wave influences,

— sometimes a sea navigation is supported by sails.
Due to these factors, applying of classical methimismodeling of the sailing vessel driving
system could not provide the expected effects. &ibes, we should develop models, which will
take additionally into account:

- the changeability of sailing conditions in a widange,

— the possibility of a sea navigation supported bk sa
Such models will be applied in the computer-aidgstesn supporting the sailing vessel operator in
a decision-making process concerning selectiohefiiost suitable sailing parameters.
This paper deals with some issues connected whtiftcation of models, which could be used
for the optimization purpose of sailing vessel giniysystems.

2. Concept of optimization model

In the sea navigation of sailing vessels can applearvariety of navigation situations
depending on: sea and weather conditions, a tirs@uokgted to reach the desired target, etc. In
generally we could specify the following situations

— sailing with the maximum speed in order to be justime in the planned navigational

point,

— sailing with the minimum fuel consumption in ordersave the operating expenses,

— fast and cheap sailing to the planned navigatipat.

In the last situation, we should find the comprarsslutions. In order to do it, we should develop
a method allowing for the optimal setting up ofvdrg system parameters that is the propeller
rotation speed and pitch. These settings, in simould assure the desirable values of parameters
determining the cheapness and quickness of sadittte planned navigational point.

Such a method can be developed based on the niatiadroptimization model of sailing vessel
driving systems. It, in turn, requires to solvesa fpartial tasks as follows:

— formulation of the multicriterial optimization olggve function together with determining

its partial (criteria) functions and constraints,

— choose of the dependent and independent variabtes partial functions,

— selection of the method for identification of maglsétting up the partial functions,

— development of optimization algorithm (includinglestion of a method for finding of

compromise solutions and computer representation).
In our approach, we have taken into account thHevimhg form of the multicriterial optimization
objective function:
I:obj = VV:I. |:Fcl + W2 EFCZ ’ (1)
where:

F.s; - an objective function of the multicriterial optiration,
w - weights determining of the partial function imgaorce; (v +w, =1),
F. - partial (criteria) functions of the multicritetiaptimization.



As the partial functions, which should charactetize sailing cheapness and quickness, we have
taken in mind relations combining the propelleatimn speed and pitch, and the sailing conditions
with the both the engine fuel consumption or theseé speed. In general description, we can
express these functions as follows:

B=f(n,h, X)), (2)
and

v=1f(n,h, X)), (3)
where:

B - an engine fuel consumption,
Vv - a vessel speed,

np - a propeller rotation speed,
h, - a propeller pitch,

Xsc - sailing conditions.

A schematic diagram presenting of application afhswelations in the optimization model is
shown in Figure 1. In this Figure, the partial ftions used to the optimization are distinguished

by thick lines.
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Fig. 1. The simplified schematic diagram of thérojzation algorithm



In the further parts of this paper, we consideryomlodeling issues, which could assist in
determining of the distinguished functions.

3. Modeling of driving system
3.1. General form of models

From a mathematical point of view, determinatiortledse relations combining the propeller
rotation speed and pitch, and navigational conditizvith the engine fuel consumption or the
vessel speed is a problem of approximation of mleltiunctions. This problem we can formulate
as follows: for a given set of multiple functionlwas X; = [x1, %,..., %] and their corresponding
valuey;, wherei =1, 2, ..., mwe should determine a function combining a vadeatbcalled the
dependent variable (a model output) and a vectamadfblesX called the independent variables
(model inputs):

y="f(X)+e @)
where:

y - a dependent variable,
X - independent variables,
£- avalue of an error term.

In the developed models, as dependent variablese selected parameters of determining the
sailing cheapness and quickness that is the enfgiele consumption and the vessel speed
respectively.
The independent variabl&sin these models are:
— factors characterizing sailing conditions (the wulidection and strength, state of the sea,
etc.),
— parameters determining a work of sailing vessalinlgi system (the engine rotation speed
and the propeller pitch).
The last parameters set up the decision-makingbias being in disposal of the sailing vessel
operator.
Disturbances of a model are caused by many factors for exanmmglearrangements in relation to
a wind direction, sea wave frequencies, mistakedendaring readings from measurement devices,
etc.
A schematic diagram of these models is present&tjure 2.
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Fig. 2. A schematic diagram of sailing vessel idgvsystem



3.2. Model variables and their acquisition

In the developed models, we have taken into acconlyt such factors which could be read,
estimated or calculated by vessel operators (aemasbfficers in watch) without any problems by
readings their values from the onboard measuringés.

As dependent variables, we select criteria whidlerd@ning the sailing cheapness and quickness
(spending of material and time resources) and eanded in the developed optimization model,
namely:

— a specific fuel consumptio® [dm*min], calculated as difference between indicationfuel

gauges installed in the engine inlet and the ofriben injectors,

— avessel speed [knots], reading form the GPS receiver.

As the independent decision-making variables wic@h be controlled by a master or officers in
watch, we take into account the following factors:

— an engine rotation speedrpm] , reading form the engine tachometer,

— settings of a propeller pitcH [scale intervals] reading form a scale of the pitgp pitch

lever.
The remaining independent variables are factoreackerizing sailing conditions as follows:

— awind speed, [m/s], reading from the anemometer,

— awind directiork,, [°], reading from the anemometer,

— a state of the ses,, [degree], carried out by the indirect estimat@eccording to the

Beaufort’s scale,

— atide speed, [m/s], calculated on a base of nautical chartsaamlal tide tables,

— atide directiorK, [], calculated on a base of the nautical chartssmmaial tide tables,

— avessel compass coutsk [°], reading from the magnetic compass,

— avessel true course (with respect to the searnp®D [°], reading form the GPS receiver.
In order to collect the appropriate set of databéng to develop our models we carried out the
special experiment on board of the sailing vesB&GORIA’ during her regular voyages. Our
observations were completed in various weather itond, on variety geographical regions, and
for different engine rotation speeds and settirfga propeller pitch. We obtained more than 800
observations, where about 50 percent of them camderoyages without supporting of sails.
During our experiment we assumed that:

— voyages are realized with stable courses accotditige smallest way to the intended point,

— wind and tide directions are orientated perpenditylto the vessel symmetry axis (it takes

into consideration increasing or decreasing depandariables according to changes of the

wind and tide directions -°@erpendicularly to vessel boards,’#6m a bow, and -Ffrom

a stern).
To solve the identification task for the considermaddels, we applied methods of regression
analysis and artificial neural networks. For aitgspurpose of neural networks we separated 37
observations (about 10% data) from the data set.

4. Ildentification of models
4.1. Regression models

To receive equations of regression models, we hppéed methods of:
— the multiple linear regression in the form:

y=a,+a h+a,M +a, v, +a, (K, +a 3 +a [V, +a, (K, (5)

— the multiple regression in the quadratic polyranform:



¥ =b, + b, [h+b,[* +b,H +b4[E12+b5@/v2V+b6[KW+b7Etm+b8@p+b9EKp, (6)

— the multiple regression in the quadratic polynomfiaim limited to the decision-making
variables:

¥ =c, +c [h+c,d* +c,[H +c,[H° + ¢, [h[H, (7)

The form of the multiple nonlinear regressions vagéhconsidered on a base of existing solutions,
which can be found in the domain bibliography. Adliculations we carried out by using the
appropriate modules of STATISTICA programs.

Equations of multiple linear regressions combinihg specific fuel consumptioB and vessel
speeds with the independent variables taken into accoecgived the forms respectively:

B = —(7,43E+01) + (5,6 7E- 02) [h + (1,86 E+ 00) [H +(1,24E-01) v, +(3,05E- 02) (K, +

8
+(2,21E+00) s, - (4,04E+00) v, +(6,45E-02) K, (®)

and

vV =(2,62E-01)+(2,48E-03)(n +(2,74E-01)[H - (3,67E-02)[v,, +(2,33E-03)(K , + ©)
—(4,23E-01) 3, - (3,99E-01) v, - (1,47E- 02) (K ,
For the presented models, we obtained values &émtltiple determination coefficiei® equal
0,751 and 0,442 accordingly. It means that only 4dfthe dependent variable variability is
‘explained’ by the multiple regression equatiortha second model.
In a case of the multiple nonlinear regressiorsiy #aquations received the forms respectively:

B = (1,53E+02) - (2,25E- 01) h + (1,09E- 04) [h? — (5,32E+ 00) [H +(2,76E-01)[H? + (10)
+(5,63E-03) ¥, +(3,15E- 02) (K, + (2,41E+00) (5, — (4,00E+00) v, +5(,41E-02) (K,
and
U=—(7,47E+00)+ (1,44E-02) (h - (4,52E- 06) (h? +(2,26E-01) (H +(1,71E-03)[H? + (a1

- (1,41E-09 3, +(3,33E-03) (K, - (3,65E- 01) [5,, - (4,32E-00) v, - (1,43E- 02) K,

For these models, we obtained values of the maltigtermination coefficie® equal 0,813 and
0,443 accordingly. It means that only 44% of thepehdent variable variability is ‘explained’ by
the multiple nonlinear regression equation in theosd model.

In order to check the legitimacy of our assumptiaking in mind the sailing conditions, we
carried out calculations for the multiple regreasiimited only to the decision-making variables
because of its using in the classical approachepted in [[3]], [[4]] and [[5]]. We received the
following equations respectively:

B =(1,26E+02)- (1,16E- 01)h + (1,00E- 04)(h? - (6,92E + 00) [H +

(12)
+(5,83E-01)H 2 + +(5,90E-03) (H [h
and
v = —(3,35E + 00) + (2,07E - 02) h - (1,00E - 06)[h? - (9,11E - 01)[H + 13)
+(2,21E-03)H 2 + 4,70E-04[H [h

In these cases, we obtained values of the muldptermination coefficienR equal 0,651 and
0,203 accordingly. Such low values of this coeéfiti confirmed the legitimacy of our assumption
taking the sailing conditions into consideration.



Nevertheless, analysis of values of the multiplemination coefficien® calculated for the best
forms of multiple regressions shows that the modatsed on such methods are not suitable for the
considered optimization purpose due to not enougplaeation of the dependent variable
variability.

4.2. Neural network models

To develop neural network models, we applied twdependent nets. They represented the
same dependences like in a case of regression saddddoth models, we used a neural network
structure including two hidden layers (Fig. 3). Thetput layer has one neuron representing
a model output (the vessel speear the specific fuel consumptid), whereas the input layer has
seven neurons representing model inputs (all ingra variables introduced in order). During
a teaching process of the neural networks we clihiagaumber of neurons comprised in the
hidden layer and their activation function in ortieobtain more desirable results.

input laver

hidden layers

output laver

Fig. 3. Two-layer neural network

Values of a teaching set subjected to linear namatbn in a range from 0,1 to 0,9. In this
teaching process, we applied the backpropagatiadhadeAll calculations have been carried out
by using the appropriate modules of MATLAB programs

As it was mentioned, from the data set we sepa@fenbservations (about 10% data) for a testing
purpose of neural networks. The highest differereta/een values obtained from both the testing
set and the primary set were equal 15 % for theispéuel consumptiorB and 11% for the vessel
speed respectivelyComparison of both networks is presented in Figure
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Fig. 4. Comparison of the primary and testing neksgo



5. Comparison of models and conclusion

In the first step we try to assess differences e&sged as percentage between the observed and
estimated values of the dependent variable. Thmat&d values of specific fuel consumptiBn
outnumbered the observed values more than 10% aag2s for the multiple linear regression and
21 cases for the multiple nonlinear regression.oMained the same results for the second model
where the dependent variable is a vessel spebda case of neural network models, we noticed
that the estimated values outnumbered the obsealeds more than 10% in 2 cases for the first
model and 7 cases for the second one. Analysisesktresults allowed us to state that the greatest
differences appeared in atypical operating sitmatidor example in heavy wind conditions with
large settings of a propeller pitch.

In the second step we carried out comparison ofdnsidered model by using index estimating of
variances between the observed and estimated valubke dependent variable frequently termed
as the standard error of estimate [6]:

_ Z(yi B 9i )2 (14)
where:

0, - the standard error of estimate,

y, - the observed value of the dependent variable,
Y, - the estimated value of the dependent variable,
n - a number of observations.

The standard error of estimate allows to compareisdd methods because of its universality.
Results of such comparison are presented in Table 1

Tab. 1. The standard error of estimated models.

Specific fuel consumption Vessel speed
Method e [dm?/min] P v [knotrs)]
Multiple linear regression 15,00 1,39
Multiple nonlinear regression 14,74 1,38
Mulfuple nonllnear regression limited to 23.78 1,20
decision-making variables
Neural networks 1,08 0,74

Analysis of Table 1 shows that the most suitablel@® of the sailing vessel driving system are
models based on neural networks. However, theseels\@dn not be presented in the analytical
forms, even so they will be taken into consideratiothe future optimization procedure enabling
selection of optimal settings of sailing vesselrafiag parameters for various sailing conditions.
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