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Abstract

This paper presents the pressure and capacity ibligions in a thin layer of non-Newtonian, visccstie,
lubricant inside the slide spherical bearing. N@othermal, unsteady and random flow conditions #mermal
deformations of the bearing surfaces are taken adoount. This problem finds application in shipygo plants,
electric locomotive designing, and precision engiirey.
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1. General assumptions
This paper presents the general analysis of thespre and capacity distributions for unsteady

non isothermal flow of visco-elastic oil within tlyap between two rotational spherical deformed
bearing surfaces in random conditions (see Fig.1).
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Fig.1. Spherical geometry on the spherical journal

We take into account following assumptions:
unsteady asymmetrical oil flow in spherical bearmgyag,
spherical bearing gap changes in circumferentidlraaridional directions,
hyper-elastic and random deformations of bearimtasas.



The time- dependent, gap- height with impulsiveyrbations has the following form [1]:

ér= endf,Jih) + as(t)=andf,J1) [1+s1 expetotim)]+ a@s= endf,Juti) + p(t)/Ess=
=endf,Jt) + Ca pro(ty), (1)

where

&3 - dimensionless corrections caused by the hypoielaformations in the gap-height
directions,

Ca=po/Es3 - Cauchy number,

Po - characteristic value of hydrodynamic pressure.

The time- independent part of value of gap- heifit smooth bearing surfaces without
deformations has the dimensional forger147,J1).

If we take into account the unsteady effects indlspe motion, then from the stochastic Reynolds
eguation presenting in spherical coordinates irepafd], [2], [3], [4] it follows:

1 1 E(ef)TE(P) |, 1 E(efy) TE(Py)
SinJl ﬂf /71 ﬂf ﬂ"]l /71 ﬂ'Jl

sind; =

= 6MsinJ1 + 128trM sinJy, (2)
17 ity

In numerical calculations we use the real value¥@ung modulus and Poisson’s ratio of
bearing soft material. We obtain from that the [tdtfaung modulus of bearing soft material in
perpendicular direction to the sliding surface, thesvalueE;;=0,1 GPa

During the impulsive motion the dimensionless puessp in the lubrication regionWV
{0<f<p, p/BEJI 1£p/2} is determined by virtue of the modified Reym®ldquations (2). The gap
height (1), is taken into account.

2. Numerical calculations

The numerical calculations are performed in Matfap by means of the finite differences
method. In the calculations we assume: the radigplterical journal R=0.02&, angular velocity
of the impulsive perturbations of bearing sleewng=15 s*, characteristic dimensional time
t,=0.00001s. To obtain real values of time we must multiplg thimensionless valuesg ly the
characteristic time valug2t0.00001s. For example;=100000 denotes one second after impulse.

We assume the following eccentricities of spherigairnal: Dg=4.0 /nm, Dg=0.5 rm,
De=3 rm and the characteristic gap-height vakjel0 /»m. Moreover we assume the following
guantities: the dynamic viscosity of d¢ih=0.030Pas pseudo-viscosity coefficierti=0.0000002
Pa<, densityof the lubricantr =890 kg/n¥, angular velocity of spherical journat157s®. The
average minimum gap- heiglti, changes within the time interval 0.000i£10s and attains
values from 6.1mm to 10.1mm; theaverage relative radial clearance amouni®éq,/R=0.0004

Under the above assumptions we obtain the chaistatedimensional value of pressure
Po=29.452431MPa, Cauchy Number Ca=0.295, Strouhal Number Str=6261é additionally:
Rexy$tr=0.297, D&tr=0.667. In this case we hav&bht<l. For the dimensionless time values:
t;=1, 4=10000, {=1 000 000, i.e. for the dimensional time value€.@0001s; t=0.1s, t=10.0s,



respectively, the dimensionless pressure distobstare presented in Fig. 2 (fars1/4), in Fig.3

(for 5= - 1/4) without hypo-elastic deformations of beariof snaterial (the left column of Fig. 1,
and Fig. 3 for Ca=0.00) and with hypo-elastic defations of bearing soft material (the right

column of Fig. 1, and Fig. 2 for Ca=0.295).
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Fig. 2. Dimensionless hydrodynamic pressure distidns inside the gap of spherical bearing withbearing soft
material deformations (the left column of figures €a=0.00) and with hypo-elastic soft material alefiations
(the right column of figures for Ca=0.295) in thegion W 0£/£p , pPRIBEJEPRI2, for the dimensionless time values:
t;=1 (i.e. t=0.00001 s),;£1 0 000 (i.e. t=0.1 s), and+1 000 00O (i.e. t=10 s) after the moment of thpuise
causing first an increase and then a decreaseefjip height (s+1/4).

The results were obtained for the following data:

R=0.025 m;#,=0.030 Pas;r=890 kg/nt; p,=29.452 MPa,g=10 /mm; Dg=4 mm; Dg=0.5 mm; Dg=3 rmm;
y% JR»0.0004;u=157 s*; =15 s'*; Str=636.6; Rexy8tr=0.297; DeStr=0.667
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Fig. 3. Dimensionless hydrodynamic pressure distidns inside the gap of spherical bearing withbearing soft

material deformations (the left column of figures €a=0.00) and with hypo-elastic soft material alefiations
(the right column of figures for Ca=0.295) in thegion W 0£/£p , pRIBEJEPR/2, for the dimensionless time values:

t;=1 (i.e. t=0.00001 s),;£1 0 000 (i.e. t=0.1 s), and+1 000 00O (i.e. t=10 s) after the moment of thptise

causing first an decrease and then a increase@fiip height, fors -1/4.
The results were obtained for the following data:
R=0.025 m;/,=0.030 Pas; =890 kg/rﬁ; Po=29.452 MPa,e=10 nm; Dg=4 mm; Dg=0.5 rmm; Dg=3 rm;
% JR»0.0004; =157 s, =15 s'; Str=636.6; Rexy8tr=0.297; DeStr=0.667

To obtain dimensional values of pressure we mustiphuthe dimensionless values indicated
in Fig. 2, 3 by the factorgpwh/y 2.

The case of Ca=0.295 presents the influence of reaterial deformations on the pressure
values. The pressure values for Ca=0.295 are @atam6 steps. We assume the dimensionless
pressure values;@-piow) obtained from Eq. (2) for Ca=0.00 i.e. valueshs pressure without



influences of bearing soft material deformatiomspé the first step of the pressure calculations.
The dimensionless valuesop)are multiplied by the non- zero Cauchy Number Ca lagence we
obtain the dimensionless gap-height in the foeps+Ca poq) For this dimensionless gap- height,
from Eq. (2) we obtain the dimensionless pressatees po—pio2) as the next step of the pressure
calculations. The dimensionless valuggpare multiplied by the non-zero Cauchy Number Ca
and hence we obtain the dimensionless gap-heigheifiorm:eris +Ca o) For this gap-height,
from Eq. (2) we obtain the dimensionless pressahees po—pios) as the third step of the pressure
calculations. The obtained series describing theedsionless pressure values is convergent to the
dimensionless boundary value of the pressu€eTne dimensionless pressure valugepobtained

in sixth step of calculations can be found in tleghborhood of the dimensionless value of
pressure f, where we have the inequality:

‘plO(S) - plO(G)‘ £ 01%

‘plo(e)‘

Fig. 4 presents the dimensional capacity distidimst versus dimensional time in seconds in
logarithmic scale (Fig. 4a) and in decimal gradatieig. 4b).

The numerical values of capacity are calculatedttierfollowing dimensionless times;=1,
t;=10, =50, §=100, =500, t=1 000, t=2 000, t=4 000, t=6 000, =8 000, =10 000,
;=20 000, $=40 000, 1=60 000, =80 000, =100 000, #=1 000 000 i.e. for the dimensional
times: t=0.0000%; t=0.0001s; t=0.0005s, t=0.001s; t=0.005s; t=0.01s; t=0.02s; t=0.04s;
t=0.06s; t=0.08s; t=0.1s; t=1.0s; t=10.0s, respectively. The first two curves depicted ie th
upper part of Fig. 3a and Fig. 3b, show the dinwrali capacity values obtained without taking
into account soft material deformations for Ca=0.Die first two curves in the lower part of Fig.
3a and Fig. 3b, show the dimensional capacity walobtained for bearing soft material
deformations with Ca=0.295. The upper curve of @achcurves in Fig.3a and Fig. 3b denotes the
dimensional capacities obtained faesl/4. The lower curve of each two curves in thegarés
denotes the dimensional capacities obtained;for¥4.

If the gap height increases;¥9) due to the impulse, then in the time after itepuhe gap-
height decreases and the pressure increlasasufficiently long time after impulse the gdygight
and pressure attains the time- independent valugaspoheight and pressure, respectively.

If the gap height decreases<{®) due to the impulse, then in the time after ifepitthe gap
height increases and the pressure decrelmsasufficiently long time after impulse the gagidht
and pressure attains the time- independent valugaspoheight and pressure, respectively.

If the time distant after the impulse moment isgamnough, i.e. for;®¥ , then the pressure
distributions for the increasing.§%) and decreasing(0) effects of gap height changes caused
by the bearing surface roughness, tend to identicedsure distributions. This limit of pressure
distribution can be also obtained from the pseudssical Reynolds equation (2).

Pressures in joint gap attain identical distribngianly when in both cases>8, s<0 the gap
height gains the same but not durable damagesuifiaiently long time after impulse.

From the terms multiplied by the Cauchy number€ahe formula (1) it follows that we can
obtain durable and not identical deformations aftjgap height if the number Ca attains not the
same values forns0, 5<0 in an enough long time after impulse moment.
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Fig. 4. Dimensional capacity distributions insideetgap of human spherical hip joint, in the regidh
0£/£p , PRIBEJEPRI2 versus dimensional time values from 0.0000119ts after impulse,
expressed in logarithmic scale (Fig. 3a), and icidel time scale (Fig. 3b).
The results were obtained for the following data0R®25 m;/,=0.030 Pas; =890 kg/rﬁ; &=10 nm; Dg=4 nm;
Deg=0.5 rm; Dg=3 rmm; y° JR» 0.0004;1=157 s*; w=15 s*; Str=636.6; Rexy8tr=0.297; DeStr=0.667

3. Conclusions

If bearing soft material deformations are neglecad the stroke increases (decreases) the
bearing gap height, then the gap decreases (irxgd<. it returns to its initial shape in the
time interval from 0.00004& to the 10.Gs. For this case the pressure distributions arespted

in the left column of Fig. 2 (Fig.3). In two abowases, a hundred seconds after injury the
pressure attains the same values (see the lowsefig the left column of Fig. 1 and Fig. 3).

If bearing soft material deformations are takew mtcount and the stroke increases (decreases)
the bearing gap height, then the gap decreasae®{ses), i.e. it returns to its initial shape but
with the same bearing soft material deformationghentime interval from 0.000Cdto the 10s.



For this case the pressure distributions are pteden the right column of Fig. 2 (Fig. 3). In
two above cases, a hundred seconds after injurprimgsure attains the same values (see the
lower figure in the right column of Fig. 2 (Fig..3)

The pressure distributions in the right columnigéifes of Fig. 2 and Fig. 3 are of much smaller
values than those of the pressure distributiortieneft column of figures of Fig. 2 and Fig. 3.
From this fact it follows that the pressure disitibns obtained without bearing soft material
deformations are of greater values than thoseeptissure distributions in spherical bearing
with soft material deformations in every momenteafinjury within the time interval from
0.00001sto 10s.

The spherical bearing capacity with bearing softemal deformations taken into account is
much smaller than that obtained for not deformalelaring surface.

The greatest changes in the capacity of sphereatig are attained within the time interval
from 0.01s to 0.3safter injury. In the time interval from 0.000810 the 0.01s after injury, the
capacities are not changed, irrespective of whetiegap height increases or decreases due to
the stroke.
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