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Abstract 
 

This paper presents the pressure and capacity distributions in a thin layer of non-Newtonian, viscoelastic, 
lubricant inside the slide spherical bearing. Non-isothermal, unsteady and random flow conditions and thermal 
deformations of the bearing surfaces are taken into account. This problem finds application in ship power plants, 
electric locomotive designing, and precision engineering.  
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1. General assumptions 

 
This paper presents the general analysis of the pressure and capacity distributions for unsteady 

non isothermal flow of visco-elastic oil within the gap between two rotational spherical deformed 
bearing surfaces in random conditions (see Fig.1). 

� �

  
Fig.1. Spherical geometry on the spherical journal 

 
We take into account following assumptions: 
�  unsteady asymmetrical oil flow in spherical bearing gap, 
�  spherical bearing gap changes in circumferential and meridional directions, 
�  hyper-elastic and random deformations of bearing surfaces. 



The time- dependent, gap- height with impulsive perturbations has the following form [1]: 
 

  eT1= eT1s(f ,J 1,t1) +e33(t1)=eT1s(f ,J 1) [1+s1 exp(- t ot1wo)]+ e33= eT1s(f ,J 1,t1) + p(t)/E33= 
 

 =eT1s(f ,J 1,t1) + Ca p10(t1),   (1) 
 
where 
 

e33  -  dimensionless corrections caused by the hypo-elastic deformations in the gap-height 
directions,  
Ca=po/E33 -  Cauchy number,  
po       -   characteristic value of hydrodynamic pressure.  

 
The time- independent part of value of gap- height for smooth bearing surfaces without 
deformations has the dimensional form: eo eT1s(f ,J 1). 
If we take into account the unsteady effects in impulsive motion, then from the stochastic Reynolds 
equation presenting in spherical coordinates in papers [1], [2], [3], [4] it follows:  
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 In numerical calculations we use the real values of Young modulus and Poisson’s ratio of 
bearing soft material. We obtain from that the total Young modulus of bearing soft material in 
perpendicular direction to the sliding surface, has the value E33=0,1 GPa. 

During the impulsive motion the dimensionless pressure p1 in the lubrication region W: 
{0<f <p, p/8£J 1£p/2} is determined by virtue of the modified Reynolds equations (2). The gap 
height (1), is taken into account. 
 
2. Numerical calculations 
 

The numerical calculations are performed in Matlab 7.2 by means of the finite differences 
method. In the calculations we assume: the radius of spherical journal R=0.025 m, angular velocity 
of the impulsive perturbations of bearing sleeve wo=15 s- 1, characteristic dimensional time 
to=0.00001 s. To obtain real values of time we must multiply the dimensionless values t1 by the 
characteristic time value to=0.00001 s. For example t1=100000 denotes one second after impulse.  

We assume the following eccentricities of spherical journal: Dex=4.0 mm, Dey=0.5 mm, 
Dez=3 mm and the characteristic gap-height value eo=10 mm. Moreover we assume the following 
quantities: the dynamic viscosity of oil ho=0.030 Pas, pseudo-viscosity coefficient b=0.0000002 
Pas2, density of the lubricant r =890 kg/m3, angular velocity of spherical journal w=157 s- 1.  The 
average minimum gap- height emin changes within the time interval  0.00001 s£t£10 s and attains 
values from 6.1 mm to 10.1 mm; the average relative radial clearance amounts to yºe o/R=0.0004. 

Under the above assumptions we obtain the characteristic dimensional value of pressure 
po=29.452431 MPa, Cauchy Number Ca=0.295, Strouhal Number Str=636.6 and additionally: 
Re×y×Str=0.297, De×Str=0.667. In this case we have 0£b/hot<1. For the dimensionless time values: 
t1=1, t1=10000, t1=1 000 000, i.e. for the dimensional time values: t=0.00001 s; t=0.1 s; t=10.0 s, 



respectively, the dimensionless pressure distributions are presented in Fig. 2 (for s1=+1/4), in Fig.3 
(for s1= - 1/4) without hypo-elastic deformations of bearing soft material (the left column of Fig. 1, 
and Fig. 3 for Ca=0.00) and with hypo-elastic deformations of bearing soft material (the right 
column of Fig. 1, and Fig. 2 for Ca=0.295).  
 

         
 
 

 
 
 

 
 

Fig. 2. Dimensionless hydrodynamic pressure distributions inside the gap of spherical bearing without bearing soft 
material deformations (the left column of figures for Ca=0.00) and with hypo-elastic soft material deformations  

(the right column of figures for Ca=0.295) in the region W: 0£j£p , pR/8£J£pR/2, for the dimensionless time values: 
t1=1 (i.e. t=0.00001 s), t1=1 0 000  (i.e.  t=0.1 s), and t1=1 000 000 (i.e. t=10 s) after the moment of the impulse 

causing first an increase and then a decrease of the gap height (s1=+1/4).  
The results were obtained for the following data:  

R=0.025 m; ho=0.030 Pas; r =890 kg/m3; po=29.452 MPa, eo=10 mm; Dex=4 mm; Dey=0.5 mm; Dez=3 mm; 
yºe o/R»0.0004; w=157 s- 1; wo=15 s- 1; Str=636.6; Re×y×Str=0.297; De×Str=0.667 
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Fig. 3. Dimensionless hydrodynamic pressure distributions inside the gap of spherical bearing without bearing soft 
material deformations (the left column of figures for Ca=0.00) and with hypo-elastic soft material deformations  

(the right column of figures for Ca=0.295) in the region W: 0£j£p , pR/8£J£pR/2, for the dimensionless time values: 
t1=1 (i.e. t=0.00001 s), t1=1 0 000  (i.e.  t=0.1 s), and t1=1 000 000 (i.e. t=10 s) after the moment of the impulse 

causing first an decrease and then a increase of the gap height, for s1= - 1/4. 
 The results were obtained for the following data:  

R=0.025 m; ho=0.030 Pas; r =890 kg/m3; po=29.452 MPa, eo=10 mm; Dex=4 mm; Dey=0.5 mm; Dez=3 mm; 
yºe o/R»0.0004; w=157 s- 1; wo=15 s- 1; Str=636.6; Re×y×Str=0.297; De×Str=0.667 

 
To obtain dimensional values of pressure we must multiply the dimensionless values indicated 

in Fig. 2, 3 by the factor po=wh/y 2. 
The case of Ca=0.295 presents the influence of soft material deformations on the pressure 

values. The pressure values for Ca=0.295 are obtained in 6 steps.  We assume the dimensionless 
pressure values p10~p10(1) obtained  from Eq. (2) for Ca=0.00 i.e. values of the pressure without 
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influences of bearing soft material deformations, to be the first step of the pressure calculations. 
The dimensionless values p10(1) are multiplied by the non- zero Cauchy Number Ca and hence we 
obtain the dimensionless gap-height in the form: eT1s+Ca p10(1). For this dimensionless gap- height, 
from Eq. (2) we obtain the dimensionless pressure values p10~p10(2) as the next step of the pressure 
calculations. The dimensionless values p10(2) are multiplied by the non-zero Cauchy Number Ca 
and hence we obtain the dimensionless gap-height in the form: eT1s +Ca p10(2). For this gap-height, 
from Eq. (2) we obtain the dimensionless pressure values p10~p10(3) as the third step of the pressure 
calculations. The obtained series describing the dimensionless pressure values is convergent to the 
dimensionless boundary value of the pressure p10. The dimensionless pressure value p10(6) obtained 
in sixth step of calculations can be found in the neighborhood of the dimensionless value of 
pressure p10, where we have the inequality: 
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 Fig. 4 presents the dimensional capacity distributions versus dimensional time in seconds in 
logarithmic scale (Fig. 4a) and in decimal gradation (Fig. 4b).  

The numerical values of capacity are calculated for the following dimensionless times:  t1=1, 
t1=10, t1=50, t1=100, t1=500, t1=1 000, t1=2 000, t1=4 000, t1=6 000, t1=8 000, t1=10 000, 
t1=20 000, t1=40 000, t1=60 000, t1=80 000, t1=100 000,  t1=1 000 000 i.e. for the dimensional 
times: t=0.00001 s; t=0.0001 s;  t=0.0005 s;  t=0.001 s; t=0.005 s; t=0.01 s; t=0.02 s; t=0.04 s; 
t=0.06 s; t=0.08 s; t=0.1 s; t=1.0 s; t=10.0 s, respectively. The first two curves depicted in the 
upper part of Fig. 3a and Fig. 3b, show the dimensional capacity values obtained without taking 
into account soft material deformations for Ca=0.00. The first two curves in the lower part of Fig. 
3a and Fig. 3b, show the dimensional capacity values obtained for bearing soft material 
deformations with Ca=0.295. The upper curve of each two curves in Fig.3a and Fig. 3b denotes the 
dimensional capacities obtained for s1=- 1/4. The lower curve of each two curves in these figures 
denotes the dimensional capacities obtained for s1=+1/4. 

If the gap height increases (s1>0) due to the impulse, then in the time after impulse the gap- 
height decreases and the pressure increases. In a sufficiently long time after impulse the gap- height 
and pressure attains the time- independent values of gap height and pressure, respectively. 

If the gap height decreases (s1<0) due to the impulse, then in the time after impulse the gap 
height increases and the pressure decreases. In a sufficiently long time after impulse the gap height 
and pressure attains the time- independent values of gap height and pressure, respectively. 

If the time distant after the impulse moment is long enough, i.e. for t1®¥ , then the pressure 
distributions for the increasing (s1>0) and decreasing (s1<0) effects of gap height changes caused 
by the bearing surface roughness, tend to identical pressure distributions. This limit of pressure 
distribution can be also obtained from the pseudo-classical Reynolds equation (2). 

Pressures in joint gap attain identical distributions only when in both cases: s1>0, s1<0 the gap 
height gains the same but not durable damages in a sufficiently long time after impulse.  ��

From the terms multiplied by the Cauchy number Ca in  the formula (1) it  follows that we can 
obtain durable and not identical deformations of joint gap height if the number Ca  attains not the 
same values for s1>0, s1<0 in an enough long time after impulse moment. 
 
 
 
 



 
 

      
 

Fig. 4. Dimensional capacity distributions inside the gap of human spherical hip joint, in the region W:   
0£j£p , pR/8£J£pR/2 versus dimensional time values from 0.00001 s to 10 s after impulse,  

expressed in logarithmic scale (Fig. 3a), and in decimal time scale (Fig. 3b).  
The results were obtained for the following data: R=0.025 m; ho=0.030 Pas; r =890 kg/m3; eo=10 mm; Dex=4 mm; 

Dey=0.5 mm; Dez=3 mm; yºe o/R» 0.0004; w=157 s- 1; wo=15 s- 1; Str=636.6; Re×y×Str=0.297; De×Str=0.667 

 
3. Conclusions  

 
��� �  If bearing soft material deformations are neglected and the stroke increases (decreases) the 

bearing gap height, then the gap decreases (increases), i.e. it returns to its initial shape in the 
time interval from 0.00001 s to the 10.0 s. For this case the pressure distributions are presented 
in the left column of Fig. 2 (Fig.3). In two above cases, a hundred seconds after injury the 
pressure attains the same values (see the lower figure in the left column of Fig. 1 and Fig. 3).   

 

��� �  If bearing soft material deformations are taken into account and the stroke increases (decreases) 
the bearing gap height, then the gap decreases (increases), i.e. it returns to its initial shape but 
with the same bearing soft material deformations in the time interval from 0.00001 s to the 10 s. 
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For this case the pressure distributions are presented in the right column of Fig. 2 (Fig. 3). In 
two above cases, a hundred seconds after injury the pressure attains the same values (see the 
lower figure in the right column of Fig. 2 (Fig. 3). 

 

��� �  The pressure distributions in the right column of figures of Fig. 2 and Fig. 3 are of much smaller 
values than those of the pressure distributions in the left column of figures of Fig. 2 and Fig. 3. 
From this fact it follows that the pressure distributions obtained without bearing soft material 
deformations are of greater values than those of the pressure distributions in spherical bearing 
with soft material deformations in every moment after injury within the time interval from 
0.00001 s to 10 s. 

 

��� �  The spherical bearing capacity with bearing soft material deformations taken into account is 
much smaller than that obtained for not deformable bearing surface. 

 

��� �  The greatest changes in the capacity of spherical bearing are attained within the time interval 
from 0.01 s to 0.3 s after injury. In the time interval from 0.00001 s to the 0.01 s after injury, the 
capacities are not changed, irrespective of whether the gap height increases or decreases due to 
the stroke. 
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