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Abstract 
 

This paper discusses selected issues of technical diagnostics and mechanics system status monitoring. The 
issues presented new elements in the test of quality vibrations machines in exploitation. Investigation of 
machinery destruction processes accompanying every machine just after its manufacturing until its 
liquidation. This gives a basis for rational maintenance of machines in newly created diagnostic 
maintenance systems. State evaluation depending on a good model and appropriate symptoms leads to 
entity-related technologies and the bionics of the existence of technical systems. The descriptors of 
diagnostic maintenance system enable to create modern maintenance strategies in enterprise systems, 
keeping modern machinery in motion.   
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1. Introduction 
 
The development of virtual technologies gives rise to many new solutions in the field of 

modelling, simulation, diagnostic information gathering and processing. Some of these 
possibilities were hinted at in this article, namely signal processing, statistical optimization of 
results and diagnostic inference.  

The role and significance of technological diagnostics in every phase of machine life are 
extremely important. They were presented in numerous works against a background of tasks 
performed by a product in specific maintenance strategies [2,3,4,5,6,7,8,9,10,11,12]. The 
assessment of machines’ technical state with the use of physical processes generated by them 
requires the gathering of crucial information on the state and proper association of functional 
parameters of an assessed item, along with a set of measures and evaluation of output processes.  

In machinery diagnostics, tests of the evolution of technical state of a particular item occurring 
in a lifecycle and time 0    b determined by the next planned or extorted item renovation in b 

constitute a basis for many scientific initiatives. A diagnostic observation of the advancement of 
item’s wear and tear is conducted through measuring various symptoms of technical state and 
comparing their values (strength, amplitude) with pre-determined allowed values – for a particular 
symptom and in a particular application.  

The actual breakthrough in the valuation of contents and extraction of diagnostic information 
from the observation matrix occurred thanks to centring and regulating symptoms to their starting 
value, that is for a model item state with no wear and tear ( = 0).  



A multi-dimensional symptomatic representation of item’s technical state in programmed 
tests, already available, as well as the possibility to extract this information online gives new 
perspectives in item diagnosing. This in particular relates to new or modernized constructions and 
new start-ups of innovative items with no operating experience. 

This paper presents the issues of redundancy reduction, the assessment of single measures of a 
diagnostic signal and multi-dimensional diagnostic information processing in program tests.  

  
2. Initial data processing 

 
In practical applications, the initial preparation of data obtained from measurements is a key 

stage in the classification of data influencing the effectiveness of state distinction, speed, easiness 
of construction and learning the cause and effect model, as well as its further generalization.  
A registered time signal of an investigated process in an Excel spreadsheet is a basis for further 
processing, i.e. in the field of time, frequency and amplitudes, resulting in many measures 
enabling the decomposition of an output signal into the signals of specific failure in development. 
The decision-making process consists of a sequence of operations from the moment of obtaining 
the information on machinery state, its gathering and processing, until making a decision and 
forwarding it for implementation. 

At the beginning, however, three types of initial data processing can be distinguished: data 
transformations, filling in the missing values and dimensionality reduction.  
 
Data transformations 

The analysis of experimental data is connected with the occurrence of different types of 
measuring scales, which can be symbolic or numeric.  In the systems of diagnostic information 
processing usually all the features describing the analyzed items have to be numeric. 

In the case of classification models making use of distances as similarity measures it is very 
common for specific features to characterize any physical state on the basis of various physical 
values, and as a result they influence distance differently. A few transformations unifying the 
influence of specific features in relation to distance values can be applied here. The most popular 
ones include normalization and standardization.    
 
Normalization 

Normalization is conducted according to the following formula: 
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where: ximax is a maximal value in the set for i-feature, and ximin a minimal value for i-feature.  
As a result of normalization, we obtain vectors with feature values in the range [0,1]. 
This transformation does not take into account the distribution of values of a specific 

symptom; consequently, in the case of the occurrence of a few symptoms with considerably 
different values, most values are pressed in a very narrow range as a result of normalization.  
 
Standardization 

Making use of the distribution of values in specific symptoms leads to a transformation known 
as standardization, as per the following relations (2). 
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As a result of this transformation symptoms with an average value of x=0 are obtained, while 

a standard deviation equals σ=1, thanks to which all the symptoms have identical input in 
information value. 

Precision constant – takes into account the range of changeability and an average value of 
measured parameters, as well as ensures non-dimensionality, as per the following relation:  
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Symptom sensitivity iw  contained together with an average value in one number ensures non-

dimensionality and changeability range: 
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 Giving the possibility of further mutual consideration of data of comparable weight 
obtained in measuring is an important and necessary step.     
 

3. Ideal point method - OPTIMUM 
 
Measured diagnostic signals reflect in various ways the observation space, and indirectly also 

failure development in a machine - fig.1. With the use of optimization techniques, it is possible to 
characterize measured symptoms’ sensitivity to state changes on the basis of measured distance. 
Distinguishing failure is possible after projecting symptoms onto respective axes: x, y, z. 

     

 
Fig.1. Multi-dimensional observation space  

    
The algorithm below enables to statistically assess individually elaborated diagnostic signals, 

resulting in a ranking list of their sensitivity and usefulness. The next steps of such proceedings are 
as follows:  

1. The creation of an observation matrix of measured symptoms: s1, s2, s3,…,sm; 
2. The results of measuring symptoms for various states are subject to statistical evaluation 

with the help of different criteria, i.e.  
- the changeability of symptoms: 
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where: Sj – standard deviation, y - average value. 
- the assessment of symptom sensitivity to state changes: 
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- the correlation with technical state, mileage (determining the coefficient of symptom-state 
correlation): 

                                          f2 = r (y,w);                        (7) 

In order to make the considerations easier and the results possible to present on a plane, two 
selected quality indicators are sufficient.  
3. Performing the maximization and normalization of assumed indicators of signal quality further, 
the statistical descriptions of their sensitivity are obtained ( 

1f , 
2f ), which further enables to 

determine the coordinates of the ideal point. Then, the determination of distances of specific signal 
measures from the ideal point is possible, as per the following relation (7): 
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4. General sensitivity coefficients (weights) for each tested signal are determined on the basis of 
the following relation:  
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The presented algorithm can be easily realized in Excel, giving a qualitative arrangement of 
measured symptoms. Fig.2 presents a final result of the effect of the described procedure on 
sample measuring data. Distance points of specific measures form the ideal point (1,1) prove the 
sensitivity of the assessed signal measures, with the nearest points (1,1) being the best symptoms. 

 
 
 
 
 
 
 
 
 
 

Fig.2. The result of ideal point method - OPTIMUM 
 

With highlighted, statistically good symptoms, cause and effect models can be built on them 
at the stage of state inference. The quality of the model depends, however, on the number of 
measures taken into account, which indirectly can be evaluated with the determinance coefficient 
R2 in the simplest regressive models.  
 
 
 
 



4. Multi-dimensional observation of the system - SVD 
 

SVD (Singular Value Decomposition) is a numeric procedure for the multi-dimensional 
monitoring of item’s state changes. It detects failure in development and selects maximally 
informative state symptoms in a given situation.  

Let us take a complex mechanical item operating in time into consideration;  0 <  < b, where 
evolutionarily a few independent failures are progressing, Ft(), t=1,2,..u. Their development can 
be understood through observing the phenomenon field, making a linear vector of technical state 
symbols; [sm] = [s1,...,sr], of various physical nature. In order to monitor the changes in item’s 
technical state, several dozens of equally distant readings of vector value in time are made; n, 
n=1,...p, p  b . In this way, the following lines of the symptomatic observation matrix (SOM) 
are obtained. We already know [Cempel01], [Cempel02] that the maximum of diagnostic 
information can be obtained from the matrix if all the readings are initially centred (distracted) and 
normalized to the initial value Sm (0) = S0m of a given symptom. In this way we obtain a non-
dimensional symptomatic matrix of observation: 

                   Opr = [Snm],       Snm = 1
0
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where: bold lettering symbolizes original dimensional values of symptoms.  
Hence, for describing a system’s lifecycle there is a non-dimensional observation matrix Opr 

with r – columns resulting from the number of observed symptoms and p – lines resulting form 
the total number of subsequent observations. A procedure of decomposition in respect of singular 
values can be applied for this non-dimensional observation matrix:  

                                  Opr = Upp * Σpr * Vrr
T,                      (11) 

where: (T- transposition) Upp is a p - dimensional orthogonal matrix of left-sided singular vectors, 
and Vrr is an r – dimensional orthogonal matrix of right-sided singular vectors, and in the centre – 
a diagonal matrix of singular values Σpr of the following properties: 

     Σpr = diag ( σ1, …, σl ),  where:  σ1 > σ2 >…> σu >0        (12) 
 and:   u+1 =… σl =0,   l= max (p, r),   u = min ( p, r). 

This means that of r – measured symptoms only u  r independent information on failure in 
development can be obtained. Such a distribution of SVD observation matrix can be conducted 
after finishing each observation; n= 1, ..., p, and in this way monitor the evolution of failure Ft (n) 
in an item.  

One failure Ft can be described by new values; SDt and t.  The first one is a generalized 
symptom of failure t, which can be called a discriminant of this failure and obtained as a right-
sided product of an observation matrix and vector vt [4]: 

                   SDt = Opr * vt = σt   ut                   (13) 
Since vectors vt and ut are normalized to entity, the length of vector SDt equals its energetic 

norm, as follows: 
                      Norm (SDt) SDt= σt                         (14) 

Thus, for an assigned lifetime , utility advancement of failure Ft can be reflected by a 
singular value t(), whereas its momentary evolution by the discriminant SDt (). The 
equivalence of new measures obtained form SVD to the descriptions of failure spaces id postulated 
in the whole lifecycle  of an item: 

   SDt ()Ft(), with the norm  Ft()SDt(= t()                      (15) 
SDt() could also be called a failure profile, whereas t() its advancement. Fig.2 visualizes the 
idea of SVD. 
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Fig.2 The contents of diagnostic information with independent failures in the symptomatic matrix of observation and 

the detected discriminants SDi and measure of advancement i 
The aim of SVD also includes the selection of maximally informative symptoms measured in 

a given instance of diagnostic observation.  
From the matrix of observation Opr = [Snm], we can define two square covariance matrices r 

and p dimensional, as shown below (*T – matrix, vector transponing): 
W1 =( Opr )

T * Opr, and; W2 = Opr *(Opr )
T                                         (16) 

The solution of this issue of such matrices (EVD) shows that singular vectors in demand 
obtained from SVD observation matrix, as well as squares of singular values can be obtained: 

W1*v = 2
v *v ,  =1,...r; and; W2 * ui = 2

i * ui , i = 1,...p.         (17) 
Hence, solving two own issues (Eigen Value Decomposition - EVD) of both matrices of 

covariance defined on the observation matrix, we obtain the exact result as from the procedure 
SVD; the only difference is the squares of singular values instead of their original values. It is 
commonly known that squaring favours the biggest values, which can thus cause a different 
evaluation of information input significance by different symptoms, but the rejection of the ones 
with the lowest values is obvious.  

A good example illustrating the application of these considerations is a diagnostic observation 
of a twelve-cylinder traction Diesel engine, where in one chosen point measurements of a dozen 
vibration symptoms in the whole lifecycle were made every  = 10 thousand km. In total, the 
amplitudes of 3 accelerations, 3 speeds, 3 displacements and 3 Rice frequencies were measured. 

The upper-left corner image shows 12 measured symptoms forming an abundance of 
information, which, however, after being processed by SVD, is easily decoded into two main 
failure types due to the fact that 1 and 2 constituting approximately 50% and 20% of the total 
amount of diagnostic information in an observation matrix (upper right corner) measured as a 
quotient of the value of a given i to the sum of all singular values. On top of that, the first failure 
SD1 (lower left corner) rises almost monotonically, whereas the second one is unstable and starts 
to rise only after the twentieth measurement (200 thousand km), which is shown in the course of 
failure intensity 2 in the lower right corner of Fig.3. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 SVD applied in engine tests 
 
Hence, the SVD procedure in the latest program implementations is of base character and 

contains only approximately 70 lines. Naturally, the algorithm can be further expanded, 
automatically searching for superfluous measuring symptoms for a given diagnostic issue. It was 
presented in Fig.3 in a simplified form – in the image in the upper right corner, where the 
participation of specific symptoms in discriminant SD1 is clearly visible. 

 
5. CONCLUSIONS 

 
The issues related to diagnosing complex technological items are constantly developed, and 

the procedures of obtaining and processing diagnostic information constantly improved. This 
paper deals with reduction redundancy for single state symbols and a multi-dimensional state test. 

A new, simple and effective method of the assessment of sensitivity of single state measures 
was proposed – the OPTIMUM method, as well as the core of the SVD method. The latter is 
applied and still improved for the needs of multi-dimensional diagnostics.  

The GSVD procedures are already implemented in the majority of advanced calculation 
systems, i.e. in MATLAB®. Thus, a diagnostic interpretation, calculation details concerning 
additional knowledge accumulated in matrices describing an item and measuring environment are 
worth considering. Such additional data do not always have to be digital; in many cases linguistic 
or fuzzy variables are sufficient. 
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